Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Rep Med ; 1(8): 100137, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-1386734

ABSTRACT

Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.

2.
Clin Immunol ; 229: 108795, 2021 08.
Article in English | MEDLINE | ID: covidwho-1305213

ABSTRACT

Acute and chronic kidney failure is common in hospitalized patients with COVID-19, yet the mechanism of injury and predisposing factors remain poorly understood. We investigated the role of complement activation by determining the levels of deposited complement components (C1q, C3, FH, C5b-9) and immunoglobulin along with the expression levels of the injury-associated molecules spleen tyrosine kinase (Syk), mucin-1 (MUC1) and calcium/calmodulin-dependent protein kinase IV (CaMK4) in the kidney tissues of people who succumbed to COVID-19. We report increased deposition of C1q, C3, C5b-9, total immunoglobulin, and high expression levels of Syk, MUC1 and CaMK4 in the kidneys of COVID-19 patients. Our study provides strong rationale for the expansion of trials involving the use of inhibitors of these molecules, in particular C1q, C3, Syk, MUC1 and CaMK4 to treat patients with COVID-19.


Subject(s)
COVID-19/metabolism , Complement System Proteins/metabolism , Kidney/metabolism , Mucin-1/metabolism , SARS-CoV-2 , Syk Kinase/metabolism , Aged , Aged, 80 and over , COVID-19/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 4/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Complement System Proteins/genetics , Fatal Outcome , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Mucin-1/genetics , Syk Kinase/genetics
3.
mBio ; 11(6)2020 11 12.
Article in English | MEDLINE | ID: covidwho-922531

ABSTRACT

Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections.


Subject(s)
Glycoproteins/metabolism , Mucins/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Bacterial Infections/metabolism , COVID-19/virology , Glycosylation , Humans , Mucin 5AC/metabolism , Mucin-1/metabolism , Mucin-5B/metabolism , Respiratory Tract Infections/prevention & control , SARS-CoV-2/pathogenicity , Virus Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL